High resource efficient waste management: SRF used in cement plants

April 22nd, 2015
Jan Theulen
Contents

- Cement Industry’s contribution to the Circular Economy
- “WtE” and “SRF for cement industry” co-exist in EU
- Co-processing SRF in cement industry can kick-start landfill diversion in markets where “WtE” might be still too expensive:
 - Examples Poland and Romania
- Feed-in tariff example Estonia
- Concluding remarks
HeidelbergCement in a glance

- Global top 4 in cement, ready-mix and aggregates
- Building on People, Planet and Profit
- Recover globally 6 million tons Waste Materials
- We see “Waste as a Resource”
How does the cement industry fit into the EU circular economy?
What is co-processing?

- Simultaneous ‘recovery of energy’ and ‘recycling of resources’ when waste materials are used in a cement plant.
- High flame temperature of 2000°C and long residence time ensure complete combustion
- Raw material preheating acts as “natural scrubber” exhaust gases → no increase emissions!
Which waste is Cement Industry Co-processing?

- Non recyclable waste, in case of:
 - not always economically viable
 - insufficient market for the recycled product
 - recycling could not be the best ecological option (e.g., it could increase the CO₂ footprint)

- Example types of waste:
 - sewage sludge
 - hazardous waste
 - used tyres
 - Municipal Solid Waste (and C&I-waste) transformed into SRF
What makes Co-processing unique?

- Dedicated waste pre-treatment facilities are established to:
 - Separate any waste that can be recycled to the recycling industry
 - Transfer the raw waste into a waste derived fuel/material within certain specifications
 - Manage the logistics between waste generation and recovery of waste derived flows in cement kilns

- It utilizes the existing infrastructure of cement kilns that are capable to thermally treat waste derived materials, without any additional emission
WtE versus SRF in cement in European countries

Waste-to-Energy in Europe (kg/cap)

SRF (and other waste fuels) Cement in Europe

Waste-to-Energy and SRF to cement co-exist in Europe
1. Quality control more explicit executed at the SRF-supplier → cement industry as user can limit control efforts

2. Supplier A and supplier B better exchangeable

3. Network of several suppliers and several off-takers is easier to build when standards are applied

4. Cross border flows will become less complicated:
 a. Reduce paper work load
 b. Shorten timeframe between application and approval

5. Stakeholder – acceptance by cement plant is easier realized when EU-standardization is applied on waste fuels
Best practice example recovery of SRF: Poland (I)

• 2002:
 – Early start co-processing due to import SRF from Germany

• 2010:
 – 2 mio ton of MSW equivalent to cement industry (no subsidies!!)
 – Zero incinerator capacity

• 2014:
 – Cement-industry reaches saturation
 – Waste-to-Energy starts with EU support

Cross border flows + existing cement plants can kick-start landfill diversion!
Best practice example recovery of SRF: Poland (II)

- EU-standards and emissions limits 100% respected
- Imports from Germany meanwhile marginal
- Professional infrastructure established both at pre-treatment plants as well as cement plants
- Other energy intensive industries can follow
Feed-in tariffs for electricity from MSW; example 220 kton/y Estonia

Turn waste to energy

Production
- Electricity: 138GWh/y
- Heat: 320-400 GWh/y

Investment
- €100m

Recovered energy
- 83%

Incentive from Estonian Government
- €32,000 for each GWh electricity produced*

Subsidy:
€4.4m per year (during 12 years)

Turn MSW to SRF for cement

Production
- Solid recovered fuel: 120,000 tonnes per year at 15GJ/t

Investment
- €36m

Recovered energy
- 90%

Subsidy:
Zero subsidy needed

*Source – Eesti Energia AS, April 2011, Sustainable Energy Week, EU Commission
Concluding remarks

1. The use of SRF (and RDF) is widely adopted in the European Cement Industry and is an established circular economy practice.

2. In some EU-countries the potential of Co-processing in Cement Kilns is close to saturation; other Energy Intensive Industries (EEI’s) could further grow their contribution.

3. In some EU-countries landfilling is still the standard practice; if “normal” standards of sanitary landfill would be applied, the costs of landfilling are rising to a level that MSW conversion to SRF for co-processing becomes feasible;

4. Landfill diversion could be further stimulated by applying landfill tax and/or banning of waste above 6 GJ/t.

5. Feed-inn tariffs for “electricity from waste” are causing an unlevel playing field with SRF use as heat source for EEI’s.
Waste is a resource...

Contact:

Jan Theulen
Global Director Alternative Resources
Global Environmental Sustainability
jan.theulen@heidelbergcement.com
+31 62 9097 354